Background/Objectives: To evaluate radiation exposure in standard interventional radiology procedures using a twin robotic X-ray system compared to a state-of-the-art conventional angiography system. Methods: Standard interventional radiology procedures (port implantation, SIRT, and pelvic angiography) were simulated using an anthropomorphic Alderson RANDO phantom (Alderson Research Laboratories Inc. Stamford, CT, USA) on an above-the-table twin robotic X-ray scanner (Multitom Rax, Siemens Healthineers, Forchheim, Germany) and a conventional below-the-table angiography system (Artis Zeego, Siemens Healthineers, Forchheim, Germany). The phantom's radiation exposure (representing the potential patient on the procedure table) was measured with thermoluminescent dosimeters. Height-dependent dose curves were generated for examiners and radiation technologists in representative positions using a RaySafe X2 system (RaySafe, Billdal, Sweden). Results: For all scenarios, the device-specific dose distribution differs depending on the imaging chain, with specific advantages and disadvantages. Radiation exposure for the patient is significantly increased when using the Multitom Rax for pelvic angiography compared to the Artis Zeego, which is evident in the dose progression through the phantom's body as well as in the organ-related radiation exposure. In line with these findings, there is an increased radiation exposure for the performing proceduralist, especially at eye level, which can be significantly minimized by using protective equipment (p < 0.001). Conclusions: In this study, the state-of-the-art conventional below-the-table angiography system is associated with lower radiation dose exposures for both the patient and the interventional radiology physician compared to an above-the-table twin robotic X-ray system for pelvic angiographies. However, in other clinical scenarios (port implantation or SIRT), both devices are suitable options with acceptable radiation exposure.