Abstract
OBJECTIVE. The purpose of this study was to assess image quality and radiation dose of a novel twin robotic x-ray system's 3D cone-beam CT (CBCT) function for the depiction of cadaveric wrists. MATERIALS AND METHODS. Sixteen cadaveric wrists were scanned using dedicated low-dose and standard-dose CBCT protocols as well as clinical MDCT for comparison. Three readers assessed overall image quality, noise, and artifacts in bone and soft tissue on 5-point Likert scales. For radiation dose analysis, volume CT dose indexes (CTDIvol) were compared. RESULTS. Overall image quality of most studies was very good or excellent in MDCT (for readers 1, 2, and 3: 100%, 100%, and 88%, respectively), standard-dose CBCT (100%, 100%, and 94%), and low dose CBCT (100%, 94%, and 88%) with two readers favoring standard-dose CBCT over MDCT image quality (readers 1 and 2; p ≤ 0.046). In soft tissue, standard-dose (readers 1, 2, and 3; p ≤ 0.021) and low-dose (all p ≤ 0.001) CBCT images had more noise than MDCT in all cases. Standard-dose (all p ≤ 0.003) and low-dose (all p < 0.001) CBCT images also displayed more artifacts. In osseous tissue, one reader observed more noise (p < 0.001) and artifacts (p = 0.020) for low-dose CBCT than for MDCT, whereas no difference was found between standard-dose CBCT and MDCT. Mean CTDIvol was significantly lower for standard-dose (5.2 ± 0.6 mGy; p < 0.001) and low-dose CBCT (1.8 ± 0.2 mGy; p < 0.001) than for clinical MDCT without automatic dose modulation (15.0 ± 0.0 mGy). CONCLUSION. The tested CBCT function delivers suitable image quality for clinical wrist imaging at significantly lower radiation levels than conventional MDCT. In combination with comfortable positioning options and the ability to perform additional radiographic and fluoroscopic examinations, the twin robotic x-ray system may hold the potential to be a one-stop shop device for trauma-associated wrist imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.