Abstract This paper proposes a virtual reality-based dual-mode teleoperation architecture to assist human operators in remotely operating robotic manipulation systems in a safe and flexible way. The architecture, implemented via a finite state machine, enables the operator to switch between two operational modes: the Approach mode, where the operator indirectly controls the robotic system by specifying its target configuration via the immersive virtual reality (VR) interface, and the Telemanip mode, where the operator directly controls the robot end-effector motion via input devices. The two independent control modes have been tested along the task of reaching a glass on a table by a sample population of 18 participants. Two working groups have been considered to distinguish users with previous experience with VR technologies from the novices. The results of the user study presented in this work show the potential of the proposed architecture in terms of usability, both physical and mental workload, and user satisfaction. Finally, a statistical analysis showed no significant differences along these three metrics between the two considered groups demonstrating ease of use of the proposed architecture by both people with and with no previous experience in VR.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access