Previous research in human-robot interaction has explored using robots to increase objective and hedonic aspects of well-being and quality of life, but there is no literature on how robots might be used to support eudaimonic aspects of well-being (such as meaning in life). A sense of meaning has been shown to positively affect health and longevity. We frame our study around the Japanese concept of ikigai, which is widely used with Japanese older adults to enhance their everyday lives, and is closely related to the concept of eudaimonic well-being (EWB) known in Western countries. Using a mixed-methods and exploratory approach, including interviews with 17 older adults and the collection of 100 survey responses, we explored how older adults in the US experience a sense of meaning, and if and how a social robot could be used to help foster this sense. We find that meaning for older adults is often obtained by helping others, through family connections, and/or through activities of daily life, and that sources of meaning often differ based on the older adults' living situation. Assessing how meaning compares to happiness and social connection, we highlight general similarities and differences, and also find that living situation influences older adults' sources of happiness, desire for social connection, and barriers to well-being, in addition to companionship and happiness having a weaker correlation with meaning for those who live alone than for those who live with others. Additionally, we evaluated initial perceptions of a social robot (QT) meant to enhance ikigai and overall well-being, finding mostly positive perceptions, though those who live alone also reported being less willing to adopt a social robot into their homes. Using both data collected on older adults' meaning and the potential use of QT to support meaning, we make several design recommendations with regards to using robots to enhance ikigai, such as by prompting daily reflecting, enhancing family bonds, and suggesting new experiences and volunteer opportunities.
Read full abstract