How to express emotions through motion behaviors of robots (mainly for robotic arms) to achieve human–robot emotion interactions is the focus of this paper. An artificial emotion expression method that accords with human emotion that can deal with external stimuli and has the capability of emotion decision-making was proposed based on the motion behaviors of robot. Firstly, a three-dimensional emotion space was established based on the motion indexes (deviation coefficient, acceleration, and interval time). Then, an artificial emotion model, which was divided into three parts (the detection and processing of external events, the generation and modification of emotion response vectors, and the discretization of emotions) was established in the three-dimensional emotion space. Then emotion patterns (love, excited, happy, anxiety, hate) and emotion intensity were calculated based on the artificial emotion model in human–robot interaction experiments. Finally, the influence of motion behaviors of humanoid robot NAO on the emotion expression of experimenters was studied through human–robot emotion interaction experiments based on the emotion patterns and emotion intensity. The positive emotion patterns (love, excited, happy) and negative emotion patterns (anxiety, hate) of the experimenters were evaluated. The experimental results showed that the personalized emotion responses could be generated autonomously for external stimuli, and the change process of human emotions could be simulated effectively according to the established artificial emotion model. Furthermore, the experimenters could recognize the emotion patterns expressed by the robot according to the motion behaviors of the robot, and whether experimenters were familiar with robots did not influence the recognition of different emotion patterns.
Read full abstract