Roasting is necessary for bringing out the aroma and flavor of coffee beans, making coffee one of the most consumed beverages. However, this process also generates a series of toxic compounds, including acrylamide and furanic compounds (5-hydroxymethylfurfural, furan, 2-methylfuran, 3-methylfuran, 2,3-dimethylfuran, and 2,5-dimethylfuran). Furthermore, not much is known about the formation of these compounds in emerging coffee formulations containing alcohol and sugars. Therefore, this study investigated the effect of roasting time and degree on levels of acrylamide and furanic compounds in arabica coffee using fast and slow roasting methods. The fast and slow roasting methods took 5.62 min and 9.65 min, respectively, and reached a maximum of 210 °C to achieve a light roast. For the very dark roast, the coffee beans were roasted for 10.5 min and the maximum temperature reached 245 °C. Our findings showed that the levels of acrylamide (375 ± 2.52 μg kg−1) and 5-HMF (194 ± 11.7 mg kg−1) in the slow-roasted coffee were 35.0 % and 17.4 % lower than in fast-roasted coffee. Furthermore, light roast coffee had significantly lower concentrations of acrylamide and 5-HMF than very dark roast, with values of 93.7 ± 7.51 μg kg−1 and 21.3 ± 10.3 mg kg−1, respectively. However, the levels of furan and alkylfurans increased with increasing roasting time and degree. In this study, we also examined the concentrations of these pollutants in new coffee formulations consisting of alcohol-, sugar-, and honey-infused coffee beans. Formulations with honey and sugar resulted in higher concentrations of 5-HMF, but no clear trend was observed for acrylamide. On the other hand, formulations with honey had higher concentrations of furan and alkylfurans. These results indicate that optimizing roasting time and temperature might not achieve the simultaneous reduction of all the pollutants. Additionally, sugar- and honey-infused coffee beans are bound to have higher furanic compounds, posing a higher health risk.