RNA molecules function in numerous biological processes by folding into intricate structures. Here we present RASP v2.0, an updated database for RNA structure probing data featuring a substantially expanded collection of datasets along with enhanced online structural analysis functionalities. Compared to the previous version, RASP v2.0 includes the following improvements: (i) the number of RNA structure datasets has increased from 156 to 438, comprising 216 transcriptome-wide RNA structure datasets, 141 target-specific RNA structure datasets, and 81 RNA-RNA interaction datasets, thereby broadening species coverage from 18 to 24, (ii) a deep learning-based model has been implemented to impute missing structural signals for 59 transcriptome-wide RNA structure datasets with low structure score coverage, significantly enhancing data quality, particularly for low-abundance RNAs, (iii) three new online analysis modules have been deployed to assist RNA structure studies, including missing structure score imputation, RNA secondary and tertiary structure prediction, and RNA binding protein (RBP) binding prediction. By providing a resource of much more comprehensive RNA structure data, RASP v2.0 is poised to facilitate the exploration of RNA structure-function relationships across diverse biological processes. RASP v2.0 is freely accessible at http://rasp2.zhanglab.net/.
Read full abstract