The temperature dependent transition from duplex to a single strand in E. coli 5S ribosomal RNA is a multistep process, and it involves intermediate states. We have analyzed these structural dynamics by chemical modification of cytidines and by single strand specific nuclease digestions. This combined approach led to the characterization of premelting and melting transitions within individual structural segments of the native macromolecule, which we feel may find general application to the structure of biological polyribonucleotides: 1) G-C base pairs at the termini of helices are relatively unstable and they readily undergo premelting transition. 2) Internal G-U/A-U rich stretches of helices exhibit dynamic premelting properties. 3) Hairpin loops have a relatively stronger destabilizing effect than internal loops. 4) Bulge loops destabilize the neighbouring base pairs. 5) Melting of helical segments occurs starting from the destabilizing structures listed above, preferentially from the helix termini. E. coli 5S rRNA has been shown to adopt different conformations. The presence of urea leads to induction of enhancement in the sensitivity for nuclease S1 at several nucleotide positions. The possibility of structural rearrangements will be discussed.