A new gene homologous to the reported antimicrobial peptide (AMP) hyastatin from Hyas araneus was screened in the SSH library constructed from the hemocytes of Scylla paramamosain, and named SpHyastatin. In vivo study showed that SpHyastatin was predominantly expressed in hemocytes of S. paramamosain. With the challenge of either Vibrio parahaemolyticus or lipopolysaccharide (LPS), SpHyastatin showed a positive response, meaning that it was probably involved in the immune reaction against bacterial infection in vivo. A distinctive feature of SpHyastatin in comparison with six other known AMPs tested was that SpHyastatin could maintain a higher transcription level from megalopas to the adult crab, indicating a potential consistent resistance against pathogens conferred by this peptide existing in the blood circulation of crabs. RNA interference assay was performed to inhibit SpHyastatin transcription in vivo and the result demonstrated that silencing SpHyastatin mRNA transcripts could decrease the survival rate of crabs challenged with V. parahaemolyticus. To further understand the molecular mechanisms that regulate SpHyastatin expression, a 576 bp 5′-flanking sequence of SpHyastatin was obtained using genome walking. Here, we focused our experiments on investigating the roles of the putative NF-κB binding site in LPS-mediated transcriptional regulation of the SpHyastatin gene using endothelial progenitor cells and Hela cells. Luciferase reporter analyses demonstrated that the putative NF-κB element acted as a positive regulatory element and was essential for the induction of SpHyastatin promoter by LPS. These results should shed light on the in vivo functional property and the molecular mechanism of regulation for the crab AMP SpHyastatin.