In recent years, the use of the RNA interference technology (RNAi) has emerged as one of the new strategies for species-specific control of insect pests. Its specificity depends on the distinctiveness of the target gene sequence for a given species. In this work, we assessed in the pea aphid Acyrthosiphon pisum (A. pisum) the use of a double-stranded RNA (dsRNA) that targets the β2 divergent nicotinic acetylcholine receptor (nAChR) subunit (dsRNA-β2), which shares low sequence identity with other subunits, to control populations of this pest at different developmental stages. Because nAChRs are targeted by neonicotinoid insecticides such as imidacloprid, we also assessed the effect of dsRNA-β2 coupled to this insecticide on aphid survival. Finally, because the effect of a control agent on beneficial insect must be considered before any use of new pest management strategies, the acute toxicity of dsRNA-β2 combined with imidacloprid was evaluated on honeybee Apis mellifera. In this work, we demonstrated that dsRNA-β2 alone has an insecticidal effect on aphid larvae and adults. Moreover, dsRNA-β2 and imidacloprid effects on aphid larvae and adults were additive, meaning that dsRNA-β2 did not alter the efficacy of imidacloprid on these two developmental stages. Also, no obvious acute toxicity on Apis mellifera was reported. Using RNAi that targets β2 divergent nAChR subunit is effective alone or combined with imidacloprid to control A. pisum at larval and adult stages. Because no obvious Apis mellifera mortality has been reported, this RNAi-based pest management strategy should be considered to control insect pest. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Read full abstract