Kindia tick virus (KITV) is a novel segmented unclassified flavi-like virus of the Flaviviridae family. This virus is associated with ixodes ticks and is potentially pathogenic to humans. The main goal of this work was to search for structural motifs of viral polypeptides and to develop a 3D-structure for viral proteins of the flavi-like KITV. The complete genome sequences for KITV, Zika, dengue, Japanese encephalitis, West Nile and yellow fever viruses were retrieved from GenBank. Bioinformatics analysis was performed using the different software packages. Analysis of the KITV structural proteins showed that they have no analogues among currently known viral proteins. Spatial models of NS3 and NS5 KITV proteins have been obtained. These models had a high level of topological similarity to the tick-borne encephalitis and dengue viral proteins. The methyltransferase and RNA-dependent RNA-polymerase domains were found in the NS5 KITV. The latter was represented by fingers, palm and thumb subdomains, and motifs A-F. The helicase domain and its main structural motifs IVI were identified in NS3 KITV. However, the protease domain typical of NS3 flaviviruses was not detected. The highly conserved amino acid motives were detected in the NS3 and NS5 KITV. Also, eight amino acid substitutions characteristic of KITV/2018/1 and KITV/2018/2 were detected, five of them being localized in alpha-helix and three in loops of nonstructural proteins. Nonstructural proteins of KITV have structural and functional similarities with unsegmented flaviviruses. This confirms their possible evolutionary and taxonomic relationships.
Read full abstract