Prevention and control of water pollution for maintaining and restoring the wholesomeness of rivers are unavoidable. The current water quality approach of designated best use has some limitations such as it is non-integrative and inflexible with regard to the consideration of variables and does not provide a separate rating scale for a given designated use. We thus used water quality index approach proposed by the Canadian Council of Ministers of the Environment (CCME WQI) to evaluate and develop a separate rating system for drinking and irrigation purposes of rivers Beas, Satluj and their confluence water of the Indian Punjab using information collected over 4 years (2016 to 2019). River Beas exhibited better water quality compared to river Satluj for irrigation as well as for drinking. The overall drinking water quality index (DWQI) for Beas was marginal (45.5), whereas it was poor for Satluj (37.7) and confluence waters (40.1). The spatial variation in DWQI was greater for Satluj compared to Beas and confluence waters reflecting the effect of dumping of untreated industrial and domestic waste waters. Variables such as Total coliform (T. coli), dissolved oxygen (DO), turbidity and biological oxygen demand (BOD) contributed to the deterioration of DWQI. The irrigation water quality index (IWQI) was good for Beas (86), marginal for Satluj (60.1) and fair for confluence waters (71.2). Faecal coliform (F. coli), Kelly ratio (KR) and %Na contributed to the deterioration of IWQI. Calcium-magnesium-bicarbonate (Ca-Mg-HCO3) was the dominant water type in Beas and confluence waters, whereas for Satluj, in addition to Ca-Mg-HCO3, sodium-potassium-chloride-sulphate and mixed water types were also prevalent. The river waters witnessed salinity hazard but did not pose sodicity hazard except at a few locations of Satluj. The study indicates the need to take location specific measures for improving river water quality for drinking as well as irrigation purposes. The current status of water quality calls for an urgent need to formulate stringent policy regulations to maintain the surface water quality.