The lactate-based polyester poly[lactate (LA)-co-3-hydroxybutyrate (3HB)], termed LAHB, is a highly transparent and flexible bio-based polymeric material. There are many unknowns regarding its degradation process in riverine environments, especially the changes in bacterial flora that might result from its degradation and the identities of any LAHB-degrading bacteria. LAHB were immersed in the river water samples (A and B), and LAHB degradation was observed in terms of the weight change of the polymer and the microscopic changes on the polymer surfaces. A metagenomic analysis of microorganisms was conducted to determine the effect of LAHB degradation on the aquatic environment. The bacterial flora obtained from beta diversity analysis differed between the two river samples. The river A water sample showed the simultaneous degradation of LA and 3HB even though the copolymer was LA-enriched, suggesting preferable hydrolysis of the LA-enriched segments. In contrast, only 3HB degraded for the LAHB in the river B water sample. The linear discriminant analysis effect size (LEfSe) analysis revealed 14 bacteria that were significantly increased in the river A water sample during LAHB degradation, suggesting that these bacteria preferentially degraded and assimilated LA-clustering polymers. Our metagenomic analysis provides useful insights into the dynamic changes in microbial communities and LA-clustering polymer-degrading bacteria.