Gonadogenesis processes in crustaceans are complex. There, however, has been a large amount of research focused on regulation of female gonad (ovary) development in crustaceans, however, there has been little focus on the male gonad (testis). In the current study, a novel male reproduction-related protein gene (Mn-MRP) was identified from Macrobrachium nipponense. The relative abundance of Mn-MRP mRNA transcript in tissues and at different developmental stages were investigated. The relative abundance of Mn-MRP mRNA transcript was larger in the testis than other tissues, and during the testis maturation stage than at other developmental stages, suggesting Mn-MRP may have important functions in reproduction processes. The RNA interference (RNAi) was used to further investigate the Mn-MRP biological function. Silencing of the Mn-MRP gene effectively decreased the abundance of the sperm gelatinase (Mn-SG) mRNA transcript, implying the protein encoded by this gene may have functions in sperm activity during the fertilization process. Further studies with RNAi and eyestalk ablation confirmed that gonad inhibiting hormone gene (Mn-GIH) is a negative regulator of Mn-MRP, and that the insulin-like androgenic gland hormone gene (Mn-IAG) is a positive regulator. There, therefore, was cloning of the Mn-MRP gene, and investigation of its potential biological function, as well as elucidation of the positive/negative regulators in current study. The results from this study provide for a greater understanding of regulatory mechanisms of male reproduction in crustaceans.