To validate five-year risk prediction models for stroke in a contemporary rural Northern Chinese population. Totally 6 483 rural adults aged 40 to 79 years without cardiovascular diseases were enrolled at baseline between June and August 2010, and followed up through January 2017. Expected prediction risk using the China-PAR (prediction for atherosclerotic cardiovascular disease risk in China) stroke risk equations were compared with the new Framingham stroke risk profile (FSRP). The recalibrated models were applied by adjusting the five-year baseline survival rate and the mean score to our rural northern Chinese population, while keeping other coefficient parameters the same as the original models. Kaplan-Meier analysis was used to obtain the observed event (nonfatal or fatal stroke) rate for the five years, and the expected-observed ratios were calculated to evaluate overestimation or underestimation in the cohort. The models were assessed by discrimination C statistic, calibration χ2, and calibration charts and plots for illustration as well. Over an average of (5.83 ± 1.14) years of the follow-up in this validation cohort with 6 483 rural Chinese participants, 438 subjects deve-loped a first stroke event. Recalibrated China-PAR stroke risk equations and FSRP well-performed for predicting five-year stroke risk in men, and had C statistics of 0.709 (95%CI, 0.675 - 0.743) and 0.721 (95%CI, 0.688 - 0.754), with calibration χ2 values being 5.7 (P = 0.770) and 13.6 (P = 0.137), respectively. However, both China-PAR and FSRP overestimated stroke events by 11.6% and 30.0% in women, and had C statistics of 0.713 (95%CI, 0.684-0.743) and 0.710 (95%CI, 0.679-0.740), respectively. Calibration χ2 values in women were 12.5 (P = 0.188) for China-PAR and 24.0 (P = 0.004) for FSRP. In addition, the calibration charts and plots illustrated good agreement between the observations and the predictions only in the China-PAR stroke risk equations, especially for men. In this validation cohort of rural northern Chinese adults, the China-PAR models had better performance of five-year stroke risk prediction than the FSRP, indicating that recalibrated China-PAR stroke risk equations might be appropriate tools for risk assessment and primary prevention of stroke in China.