BackgroundMore than one third of nurses experience musculoskeletal pain several times during a normal work week. Consistent use of assistive devices during patient transfers is associated with a lower risk of occupational back injuries and low back pain (LBP). While uncertainties exist regarding which type of assistive devices most efficiently prevent LBP, exposure assessments using technological advancements allow for quantification of muscle load and body positions during common work tasks.ObjectiveThe main objectives of this study are (1) to quantify low back and neck/shoulder muscle load in Danish nurses during patient transfers performed with different types of assistive devices, and (2) to combine the exposure profile for each type of assistive device with fortnightly questionnaires to identify the importance of muscle load (intensity and frequency of transfers) and body position (degree of back inclination and frequency) on LBP intensity and risk of back injury during a patient transfer.MethodsA combination of technical measurements (n=50) and a prospective study design (n=2000) will be applied on a cohort of female nurses in Danish hospitals. The technical measurements will be comprised of surface electromyography and accelerometers, with the aim of quantifying muscle load and body positions during various patient transfers, including different types of assistive devices throughout a workday. The study will thereby gather measurements during real-life working conditions. The prospective cohort study will consist of questionnaires at baseline and 1-year follow-up, as well as follow-up via email every other week for one year on questions regarding the frequency of patient transfers, use of assistive devices, intensity of LBP, and back injuries related to patient transfers. The objective measurements on muscle load and body positions during patient handlings will be applied to the fortnightly replies regarding frequency of patient transfer and use of different assistive devices, in order to identify risk factors for back injuries related to patient transfers and intensity of LBP.ResultsData collection is scheduled to commence during the winter of 2017.ConclusionsThe design of this study is novel in its combination of technical measurements applied on a prospective cohort, and the results will provide important information about which assistive devices are associated with intensity of LBP and risk of back injury related to patient transfers. Furthermore, this study will shed light on the dose-response relationship between intensity, duration, and frequency of patient transfers and the intensity of LPB in Danish nurses, and will thereby help to guide and improve electronic health practices among this population.
Read full abstract