To evaluate the impact of changes in the size and characteristics of the hospitalized patient population during the COVID-19 pandemic on the incidence of hospital-associated Clostridioides difficile infection (HA-CDI). Interrupted time-series analysis. A 576-bed academic medical center in Portland, Oregon. We established March 23, 2020 as our pandemic onset and included 24 pre-pandemic and 24 pandemic-era 30-day intervals. We built an autoregressive segmented regression model to evaluate immediate and gradual changes in HA-CDI rate during the pandemic while controlling for changes in known CDI risk factors. We observed 4.5 HA-CDI cases per 10,000 patient-days in the two years prior to the pandemic and 4.7 cases per 10,000 patient-days in the first two years of the pandemic. According to our adjusted segmented regression model, there were neither significant changes in HA-CDI rate at the onset of the pandemic (level-change coefficient = 0.70, P-value = 0.57) nor overtime during the pandemic (slope-change coefficient = 0.003, P-value = 0.97). We observed significant increases in frequency and intensity of antibiotic use, time at risk, comorbidities, and patient age before and after the pandemic onset. Frequency of C. difficile testing did not significantly change during the pandemic (P= 0.72). Despite large increases in several CDI risk factors, we did not observe the expected corresponding changes in HA-CDI rate during the first two years of the COVID-19 pandemic. We hypothesize that infection prevention measures responding to COVID-19 played a role in CDI prevention.
Read full abstract