Some styles of alcohol consumption are riskier than others. How the level and rate of alcohol exposure contribute to the increased risk of alcohol use disorder is unclear, but likely depends on the alcohol concentration time course. We hypothesized that the brain is sensitive to the alcohol concentration rate of change and that people at greater risk would self-administer faster. We developed a novel intravenous alcohol self-administration paradigm to allow participants direct and reproducible control over how quickly their breath alcohol concentration changes. We used drinking intensity and the density of biological family history of alcohol dependence as proxies for risk. Thirty-five alcohol drinking participants aged 21-28 years provided analytical data from a single, intravenous alcohol self-administration session using our computer-assisted alcohol infusion system rate control paradigm. A shorter time to reach 80 mg/dl was associated with increasing multiples of the binge drinking definition (p = 0.004), which was in turn related to higher density of family history of alcoholism (FHD, p = 0.04). Rate-dependent changes in subjective response (intoxication and stimulation) were also associated with FHD (each p = 0.001). Subsequently, given the limited sample size and FHD range, associations between multiples of the binge drinking definition and FHD were replicated and extended in analyses of the Collaborative Study on the Genetics of Alcoholism database. The rate control paradigm models binge and high-intensity drinking in the laboratory and provides a novel way to examine the relationship between the pharmacokinetics and pharmacodynamics of alcohol and potentially the risk for the development of alcohol use disorders.