Aeromonas hydrophila has ability to spread tetracycline resistance (tetR) under stresses of oxytetracycline (OTC), one of the most important antibiotics in aquaculture industry. Even though environmental reservoir of Aeromonas allows it to be at interfaces across One Health components, a robust modelling framework for rigorously assessing health risks is currently lacking. We proposed a One Health-based approach and leveraged recent advances in quantitative microbial risk assessment appraised by available dataset to interpret interactions at the human–animal–environment interfaces in various exposure scenarios. The dose–response models were constructed considering the effects on mortality for aquaculture species and tetR genes transfer for humans. A scenario-specific risk assessment on pond species-associated A. hydrophila infection and human gut-associated tetR genes transfer was examined. Risk-based control strategies were involved to test their effectiveness. We showed that farmed shrimp exposed to tetracycline-resistant A. hydrophila in OTC-contaminated water experienced higher infection risk (relative risk: 1.25–1.34). The tetR genes transfer risk for farmers in shrimp ponds (∼2 × 10−4) and swimmers in coastal areas (∼4 × 10−6) during autumn exceeded acceptable risk (10−6). This cautionary finding underscores the importance of accounting for monitoring, assessing, and mitigating occupational health hazards among workers in shrimp farming sectors within future One Health-based strategies for managing water infection risks. We recommend that OTC emission rate together with A. hydrophila concentration should be reduced by up to 70–99% to protect human, farmed shrimp, and environmental health. Our predictive framework can be adopted for other systems and be used as a “risk detector” for assessing tetR-related health risks that invoke potential risk management on addressing sustainable mitigation on offsetting residual OTC emission and tetR genes spread in a species–human–environmental health system.
Read full abstract