A portable optical emission spectroscopy-cavity ringdown spectroscopy (OES-CRDS) dual-mode plasma spectrometer is described. A compact, low-power, atmospheric argon microwave plasma torch (MPT) is utilized as the emission source when the spectrometer is operating in the OES mode. The same MPT serves as the atomization source for ringdown measurements in the CRDS mode. Initial demonstration of the instrument is carried out by observing OES of multiple elements including mercury (Hg) in the OES mode and by measuring absolute concentrations of Hg in the metastable state 6s6p (3)P(0) in the CRDS mode, in which a palm-size diode laser operating at a single wavelength 405 nm is incorporated in the spectrometer as the light source. In the OES mode, the detection limit for Hg is determined to be 44 parts per 10(9) (ppb). A strong radiation trapping effect on emission measurements of Hg at 254 nm is observed when the Hg solution concentration is higher than 50 parts per 10(6) (ppm). The radiation trapping effect suggests that two different transition lines of Hg at 253.65 nm and 365.01 nm be selected for emission measurements in lower (<50 ppm) and higher concentration ranges (>50 ppm), respectively. In the CRDS mode, the detection limit of Hg in the metastable state 6s6p (3)P(0) is achieved to be 2.24 parts per 10(12) (ppt) when the plasma is operating at 150 W with sample gas flow rate of 480 mL min(-1); the detection limit corresponds to 50 ppm in Hg sample solution. Advantage of this novel spectrometer has two-fold, it has a large measurement dynamic range, from a few ppt to hundreds ppm and the CRDS mode can serve as calibration for the OES mode as well as high sensitivity measurements. Measurements of seven other elements, As, Cd, Mn, Ni, P, Pb, and Sr, using the OES mode are also carried out with detection limits of 1100, 33, 30, 144, 576, 94, and 2 ppb, respectively. Matrix effect in the presence of other elements on Hg measurements has been found to increase the detection limit to 131 ppb. These elements in lower concentrations can also be measured in the CRDS mode when a compact laser source is available to be integrated into the spectrometer in the future. This exploratory study demonstrates a new instrument platform using an OES-CRDS dual-mode technique for potential field applications.
Read full abstract