Abstract We propose a novel scheme to engineer the atomic hyperentangled cluster and ring graph state invoking cavity-QED technique for applicative relevance to quantum biology and quantum communications utilizing the complex quantum networks. These states are engineered using both external quantized momenta states and energy levels of neutral atoms under off-resonant and resonant Atomic Bragg Diffraction (ABD) technique. The study of dynamical capacity and potential efficiency have certainly enhanced the range of usefulness of these states. In order to assess the operational behavior of such states when subjected to a realistic noise environment has also been simulated, demonstrating long enough sustainability of the proposed states. Moreover, experimental feasibility of the proposed scheme has also been elucidated under the prevailing cavity-QED research scenario.