E3 ubiquitin ligase Zinc and Ring Finger 2 (ZNRF2) has been demonstrated to be engaged in the development of multiple cancers. Nevertheless, the function of ZNRF2 in breast cancer (BC) still unclear. In this work, we firstly analyzed the differentially expressed genes in BC by bioinformatics and found that ZNRF2 was highly expressed in BC. Consistently, we further confirmed that ZNRF2 was upregulated in BC tissues compared with adjacent normal tissues, and this was positively correlated with the poor prognosis and the higher pathological grades of patients with BC. Functional assays performed on HCC1937 and MCF-7 cells indicated that silencing of ZNRF2 suppressed cell proliferation, as evidenced by the decrease in the expression of cyclin A, PCNA and cyclin D1. Flow cytometry and Hoechst staining showed that knockdown of ZNRF2 induced cell apoptosis, which was verified by the upregulation of apoptosis genes such as Bax, cleaved PARP and Bim. ZNRF2 knockdown also inhibited in vivo tumor growth. But, instead, ZNRF2-overexpressed BC cells exhibited obvious malignant phenotypes. Additionally, we observed that cAMP response element binding protein 1 (CREB1) directly bound to the promoter sequence of ZNRF2 and thus activating its transcription, suggesting that ZNRF2 is transcriptionally regulated by CREB1. Additionally, ZNRF2 knockdown could reverse the proliferation-promoting action of CREB1 on BC cells, Hence, this study demonstrated that ZNRF2 might serve as a prospective therapeutic target for BC.