In this work, the synthesis, characterization, and X-ray powder diffraction data for dichloridodioxido-[(4,7-dimethyl)-1,10-phenanthroline]molybdenum(VI) are reported. The crystal structure of this compound was solved from powder diffraction data using the simulated annealing method with a subsequent refinement using the Rietveld method. The dioxo-molybdenum (VI) complex C14H12Cl2MoN2O2 crystallizes in a monoclinic system with space group C2/c (N° 15) with refined unit-cell parameters a = 12.9495 (5) Å, b = 9.7752 (4) Å,c = 12.0069 (6) Å, β = 101.702 (3) °, unit-cell volume V = 1488.27 (11) Å3, and values of Z′ = 0.5 and Z = 4. The molecules are organized into chains diagonally along the a and c axis. Parallel polyhedra are observed along these axes formed by the interactions of Mo, Cl, O, and N atoms present in the coordination sphere. The crystalline packing of this dioxo-molybdenum (VI) complex is dominated by five intermolecular hydrogen bonds, two intramolecular hydrogen bonds, and the four interactions between the centroids (CgI⋯CgJ) of the aromatic rings. An analysis of the Hirshfeld surface revealed that the greatest contributions of the attractive forces are given by H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯O/O⋯H, and H⋯H interactions.