During prograde metamorphism garnet and, in some higher grade samples, staurolite were produced in a chlorite-chloritoid schist, part of the Precambrian Z to Cambrian Hoosac Formation near Jamaica, VT. Garnet grew during two prograde events separated by a retrogression. This sequence resulted in distinctive inclusion textures and zoning anomalies in garnet produced by diffusive alteration. Textures, reaction space analysis, and mineral compositional variations constrain the possible sequence of reactions in these rocks. Below the staurolite isograd, and to some unknown extent above it, garnet grew by the reaction chloritoid+chlorite+quartz→garnet+H2O. With increasing grade the mineral compositions are displaced towards lower Mn/Fe and higher Mg/Fe ratios. The data are compatible with equilibrium with respect to exchange reactions for the matrix assemblages on a thin section scale and with minerals having closely followed equilibrium paths during reaction. The staurolite isograd coincides with the reaction chloritoid+quartz→garnet+staurolite+chlorite+H2O. This reaction is continuous and trivariant with ZnO becoming an additional component concentrated in staurolite. During this reaction both the Mn/Fe and Mg/Fe ratios of the phases appear to have decreased. This new chemical trend is recorded by garnet zoning profiles and is compatible with trends predicted from phase diagrams. Thus there are two distinct types of garnet zoning reversals in these samples. One is near the textural unconformity and is best explained by diffusive alteration during partial resorption of first stage garnet. The other occurs near the outer rim of garnet in staurolite zone samples and marks the onset of a new prograde garnet producing reaction.
Read full abstract