Rigorous Coupled Wave Analysis (RCWA) (used for electromagnetic (EM) analysis of planar diffraction gratings) has been applied to solve EM scattering and diffraction problems for spatially inhomogeneous, cylindrical, elliptical systems. The RCWA algorithm and an appropriate method for matching EM boundary conditions in the elliptical system are described herein. Comparisons of the eigenfunctions determined by RCWA (found in spatially homogeneous elliptical regions) and Mathieu functions are presented and shown to agree closely with one another. Numerical results of scattering from a uniform elliptical shell system (excited by an electrical surface current) obtained by using both a Mathieu function expansion method and by using the RCWA algorithm are presented and also shown to agree closely with one another. The RCWA algorithm was used to study EM scattering and diffraction from an elliptical, azimuthally inhomogeneous dielectric permittivity, step profile system. EM field matching and power conservation were shown to hold for this step profile example. A comparison of the EM fields of the step profile elliptical shell example and that of a uniform profile elliptical shell having the same excitation and bulk material parameters (permittivity and permeability) was made and significant differences of the EM fields of the two systems were observed.
Read full abstract