Although thermally conductive composites that can efficiently dissipate the heat generated from electronic devices are in high demand, most neat polymers used as matrix materials are problematic because they have poor thermal conductivities. The low thermal conductivity of polymeric materials is caused by structural defects; therefore, it can be improved by increasing the orientational regularity of the polymer chains. Here, main-chain liquid crystalline polymers (LCPs) were designed and synthesized to investigate the effects of liquid crystallinity-induced structural regularity on the thermal conductivity of the polymers. In addition, an in-situ polymerization method was devised for commercial applicability, and the thermal conductivity of the obtained polymer was compared to that of a conventionally polymerized polymer having the same structure. The designed polymers exhibited thermotropic liquid crystalline characteristics, and the polymer with longer spacers between the rigid segments showed relatively higher thermal conductivity exceeding 0.5 W·m-1· K-1 after sample preparation by injection molding. In addition, X-ray diffraction analysis revealed that the differences in the thermal conductivity, depending on the molding temperature during specimen preparation, were caused by variations in chain orientation within the same polymer. Based on the obtained results, it was concluded that LCPs are strong candidate matrix materials for thermally conductive composites; the suggested in-situ polymerization method could be applied practically to the polymerization of polyester-type LCPs.
Read full abstract