Crack attenuating mixtures, denoted as CAM, are some of the mixes commonly used in the State of Texas (USA) to mitigate reflective cracking in overlays, both in flexible-hot mix asphalt (HMA) and rigid concrete pavements. Typically designed at 98% lab density, with high quality aggregates, these fine-graded HMA mixes are rich in asphalt-binder (minimum 6.5%), predominantly using PG 76-22. In this study, three PG 76-22 asphalt-binders from three different sources (denoted as A, B, and C) were evaluated in the laboratory for their potential to meet the CAM Balanced Mix-Design (BMD) requirements when used in combination with limestone aggregates and 1% hydrated lime. Laboratory tests conducted included the Hamburg wheel tracking test (i.e., for rutting and moisture damage [stripping] evaluation), the Overlay test (i.e., for cracking evaluation), and the asphalt-binder rheology, namely the dynamic shear rheometer (DSR) and the bending beam rheometer (BBR). The corresponding results indicated that not all PG 76-22 asphalt-binders are manufactured equally and that material source has a profound influence on both the asphalt-binder rheological properties and the overall performance of the resulting HMA mix. In fact, one of the PG 76-22 asphalt-binder graded out as a PG 82-22 and could not meet the BMD performance requirements for a CAM mix-design. As part of the quality control/assurance protocols and to ensure that the right materials “as designed and specified” are utilized, the overall findings of study suggests that it is imperative that all asphalt-binders delivered to a given construction site must be sampled and tested for its rheological properties and graded accordingly. Provided high quality materials are used, the study also indicated that a CAM mix could satisfactorily be designed at a lower lab density than 98% (i.e., 96.5-97.5%); which translates into cost savings in terms of the asphalt-binder content.
Read full abstract