Assessing preferred relative rigid body position and orientation is important in the description of biomolecular structures (such as proteins) and their interactions. In this article, we extend and apply the "symmetrical parameterization," which we recently introduced in the kinematics community, to address problems in structural biology. We also review parameterization methods that are widely used in structural biology to describe relative rigid body motions (in particular, orientations) as a basis for comparison. The new symmetrical parameterization is useful in describing the relative biomolecular rigid body motions, where the parameters are symmetrical in the sense that the subunits of a complex biomolecular structure are described in the same way for the corresponding motion and its inverse. The properties of this new parameterization, singularity analysis, and inverse kinematics are also investigated in more detail. Finally, parameterization is applied to real biomolecular structures and a potential application to structure modeling of symmetric macromolecules to show the efficacy of the symmetrical parameterization in the field of computational structural biology.