Metasurfaces, especially coded ones, have gained significant attention for their excellent ability to control electromagnetic (EM) waves, opening up possibilities for a new generation of miniaturized devices. However, integrating multiple functionalities into a single metasurface while endowing tunable performance remains a challenge. In this study, we propose a strategy to design switchable and multifunctional terahertz (THz) photonic devices using complementary Gold-VO2 split resonant ring (GV-SRR) and complementary Gold-VO2 split resonant oblong (GV-SRO) structures. The designed devices can convert right-handed circularly polarized (RCP) light into left-handed circularly polarized (LCP) light in three frequency bands, corresponding to center frequencies fre.1 = 0.34 THz (narrowband), fre.2 = 0.50 THz (narrowband), and fre.3 = 0.80 THz (broadband). The phases of the reflected LCP wave can be independently modulated across different frequency bands by rotating the in-plane orientation of GV-SRR and GV-SRO separately. In addition, the overall phase reconstruction can be achieved through the state change of VO2. By arranging GV-SRR and GV-SRO in a defined encoding form, the engineered photonic devices can exhibit distinct and switchable capabilities in modulating EM wavefronts across various frequency ranges. As proof-of-concept examples, we have designed three encoded photonic devices, namely, a dynamic beam splitter (DBS), an achromatic and zoom metalens (AZM), and a switchable device between metalens and focusing orbital angular momentum (OAM) generator (MFOAM). These devices have potential applications in wireless communication, AR holographic displays, and information processing.
Read full abstract