Dioxygen (O2) activation by iron-containing enzymes and biomimetic compounds generates iron-oxygen intermediates, such as iron-superoxo, -peroxo, -hydroperoxo, and -oxo, that mediate oxidative reactions in biological and abiological systems. Among the iron-oxygen intermediates, iron(III)-peroxo species are less frequently implicated as active intermediates in oxidation reactions. In this study, we present the combined experimental and theoretical investigations on cis-dihydroxylation reactions mediated by synthetic mononuclear nonheme iron-peroxo intermediates, demonstrating the importance of supporting ligands and metal centers in activating the peroxo ligand toward the O-O bond homolysis for the cis-dihydroxylation reactions. We found a significant ring size effect of the TMC ligand in [FeIII(O2)(n-TMC)]+ (TMC = tetramethylated tetraazacycloalkane; n = 12, 13, and 14) on the cis-dihydroxylation reactivity order: [FeIII(O2)(12-TMC)]+ > [FeIII(O2)(13-TMC)]+ > [FeIII(O2)(14-TMC)]+. Additionally, we found that only [FeIII(O2)(n-TMC)]+, but not other metal-peroxo complexes such as [MIII(O2)(n-TMC)]+ (M = Mn, Co, and Ni), is reactive for the cis-dihydroxylation of olefins. Using density functional theory (DFT) calculations, we revealed that electron transfer from the Fe dxz orbital to the peroxo σ*(O-O) orbital facilitates the O-O bond homolysis, with the O-O bond cleavage barrier well correlated with the energy gap between the frontier molecular orbitals of dxz and σ*(O-O). Further computational studies showed that the reactivity of the synthetic [FeIII(O2)(12-TMC)]+ complex is comparable to that of Rieske dioxygenases in cis-dihydroxylation, providing compelling evidence of the potential involvement of Fe(III)-peroxo species in Rieske dioxygenases. Thus, the present results significantly advance our understanding of the cis-dihydroxylation mechanisms by Rieske dioxygenases and synthetic nonheme iron-peroxo models.
Read full abstract