Abstract

AbstractRieske dioxygenases have a history of utility in organic synthesis, owing to their ability to catalyze the asymmetric dihydroxylation of aromatics to produce chiral diene‐diol metabolites. However, their utility as green‐chemical tools has been limited by steric and electronic constraints on their substrate scopes and their activity. Herein we report the rational engineering of a widely used Rieske dioxygenase, toluene dioxygenase (TDO), to improve the activity of this enzyme system for the dihydroxylation of a synthetically valuable substrate class for which the wild‐type enzyme possesses low activity, the ester‐functionalized aromatics. Through active site targeted mutagenesis and application of a recently reported high throughput screening platform, engineered TDO variants with significantly increased activity in the dihydroxylation of these valuable substrates were identified and characterized, revealing key active site residues that modulate the enzyme's activity and selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.