In this article, we continue the discussion of Fang–Wu (2015) to estimate the spectral gap of the Ornstein–Uhlenbeck operator on path space over a Riemannian manifold of pinched Ricci curvature. Along with explicit estimates we study the short-time asymptotics of the spectral gap. The results are then extended to the path space of Riemannian manifolds evolving under a geometric flow. Our paper is strongly motivated by Naber's recent work (2015) on characterizing bounded Ricci curvature through stochastic analysis on path space.