A periodic solution of the time-fractional nonlinear oscillator is derived based on the Riemann–Liouville definition of the fractional derivative. In this approach, the particular integral to the fractional perturbed equation is found out. An enhanced perturbation method is developed to study the forced nonlinear Duffing oscillator. The modified homotopy equation with two expanded parameters and an additional auxiliary parameter is applied in this proposal. The basic idea of the enhanced method is to apply the annihilator operator to construct a simplified equation freeness of the periodic force. This method makes the solution process for the forced problem much simpler. The resulting equation is valid for studying all types of possible resonance states. The outcome shows that this alteration method overcomes all shortcomings of the perturbation method and leads to obtain a periodic solution.