Calculus on fractals, or Fα-calculus, developed in a previous paper, is a calculus based fractals F ⊂ R, and involves Fα-integral and Fα-derivative of orders α, 0 < α ≤ 1, where α is the dimension of F. The Fα-integral is suitable for integrating functions with fractal support of dimension α, while the Fα-derivative enables us to differentiate functions like the Cantor staircase. Several results in Fα-calculus are analogous to corresponding results in ordinary calculus, such as the Leibniz rule, fundamental theorems, etc. The functions like the Cantor staircase function occur naturally as solutions of Fα-differential equations. Hence the latter can be used to model processes involving fractal space or time, which in particular include a class of dynamical systems exhibiting sublinear behaviour. In this paper we show that, as operators, the Fα-integral and Fα-derivative are conjugate to the Riemann integral and ordinary derivative respectively. This is accomplished by constructing a map ψ which takes Fα-integrable functions to Riemann integrable functions, such that the corresponding integrals on appropriate intervals have equal values. Under suitable conditions, a restriction of ψ also takes Fα-differentiable functions to ordinarily differentiable functions such that their values at appropriate points are equal. Further, this conjugacy is generalized to one between Sobolev spaces in ordinary calculus and Fα-calculus. This conjugacy is useful, among other things, to find solutions to Fα-differential equations: they can be mapped to ordinary differential equations, and the solutions of the latter can be transformed back to get those of the former. This is illustrated with a few examples.
Read full abstract