In order to enhance the transient stability of offshore wind turbines (OWTs) in marine energy systems, the grid codes stipulate that OWTs should possess the low-voltage ride-through (LVRT) ability of being grid-tied and injecting reactive current during grid fault. However, the grid-side converter (GSC) of OWTs may lose stability under weak grid or severe fault conditions due to inaccurate current references. To address this issue, a novel transient current control method is proposed to improve the transient stability of permanent-magnet-synchronous-generator (PMSG)-based OWTs. The feature of DC-link overvoltage is investigated and is alleviated by utilizing the GSC’s overcurrent capacity and chopper. Additionally, the equivalent circuit of the PMSG-based OWT connected to the onshore grid is derived based on Thevenin’s theorem. The feasible current region (FCR) is then determined, taking into account the GSC capacity, pre-fault power ability, LVRT requirement, and synchronization stability. Furthermore, a grid-impedance-based transient current control method is designed to enhance the fault ride-through performance and mitigate power oscillation of the OWT under various transient grid impedance and fault conditions. Finally, a simulation model is conducted using PSCAD v4.6.3 software to validate the effectiveness of the proposed method.
Read full abstract