The genotype evaluation process requires analysis of GxE interactions to ascertain the responsiveness of a genotype to various environments, including the development of early maturing rice. However, the concept of interaction is relatively specific to grain yield. In contrast, grain yield is highly polygenic, so assessment should be carried out with multivariate approaches. Therefore, multivariate assessment in evaluating GxE interactions should be developed, especially for early maturing rice genotypes. The study aimed to develop a comprehensive multivariate approach to improve the comprehensiveness and responsiveness of GxE interaction analysis. The study was conducted in Bone and Soppeng districts, South Sulawesi, Indonesia, in two seasons. The study used a randomized complete block design, where replications were nested across two seasons and locations. Two check varieties and five early maturing varieties were replicated three times in each environment. Based on this study, a new approach to GxE interaction analysis based on multiple regression index analysis, BLUP analysis, factor analysis, and path analysis was considered adequate, especially for evaluating early maturing rice. This approach combined days to harvest, biological yield, and grain yield in multiple linear regression with weighting based on the combination of all analyses. The effectiveness of the GxE interaction assessment was reflected by high coefficient of determination (R2) and gradient (b) values above 0.8 and 0.9, respectively. Inpari 13 (R2=0.9; b=1.05), Cakrabuana (R2=0.98; b=0.99), and Padjajaran (R2=0.95; b=1.07) also have good grain yield with days to harvesting consideration, namely 7.83ton ha-1, 98.12 days; 7.37ton ha-1, 95.52 days; and 7.29ton ha-1, 97.23 days, respectively. Therefore, this index approach can be recommended in GxE interaction analysis to evaluate early maturing rice genotypes. Furthermore, Inpari 13, Cakrabuana, and Padjajaran are recommended as adaptive early maturing varieties.
Read full abstract