Accurate assessment of crop biochemical profiles plays a crucial role in diagnosing their physiological status. The conventional destructive methods, although reliable, demand extensive laboratory work for measuring various traits. On the other hand, nondestructive techniques, while efficient and adaptable, often suffer from reduced precision due to the intricate interplay of the field environment and canopy structure. Striking a delicate balance between efficiency and accuracy, we have developed the Bio-Master phenotyping system. This system is capable of simultaneously measuring four vital biochemical components of the canopy profile: dry matter, water, chlorophyll, and nitrogen content. Bio-Master initiates the process by addressing structural influences, through segmenting the fresh plant and then further chopping the segment into uniform small pieces. Subsequently, the system quantifies hyperspectral reflectance and fresh weight over the sample within a controlled dark chamber, utilizing an independent light source. The final step involves employing an embedded estimation model to provide synchronous estimates for the four biochemical components of the measured sample. In this study, we established a comprehensive training dataset encompassing a wide range of rice varieties, nitrogen levels, and growth stages. Gaussian process regression model was used to estimate biochemical contents utilizing reflectance data obtained by Bio-Master. Leave-one-out validation revealed the model’s capacity to accurately estimate these contents at both leaf and plant scales. With Bio-Master, measuring a single rice plant takes approximately only 5 min, yielding around 10 values for each of the four biochemical components across the vertical profile. Furthermore, the Bio-Master system allows for immediate measurements near the field, mitigating potential alterations in plant status during transportation and processing. As a result, our measurements are more likely to faithfully represent in situ values. To summarize, the Bio-Master phenotyping system offers an efficient tool for comprehensive crop biochemical profiling. It harnesses the benefits of remote sensing techniques, providing significantly greater efficiency than conventional destructive methods while maintaining superior accuracy when compared to nondestructive approaches.
Read full abstract