Aromatase (encoded by Cyp19a1) in the ovarian follicular cells catalyzes the production of estradiol from testosterone, which plays important roles in the ovarian development of vertebrates. In the present study, the interaction of Dmrt1, Foxl2, and Nr5a1a on the regulation of cyp19a1a transcription in ovarian follicles was examined in a teleost, the ricefield eel Monopterus albus. The expression of dmrt1a, foxl2, and nr5a1a was detected in ovarian follicular cells together with cyp19a1a at the mRNA and/or protein levels. Sequence analysis identified one conserved Foxo binding site in the proximal promoter region of ricefield eel cyp19a1a. Transient transfection assay showed that Foxl2 may bind to the conserved Foxo site to activate cyp19a1a transcription and act synergistically with Nr5a1a. Mutation of either the conserved Nr5a1 site or Foxo site abolished or significantly decreased the synergistic effects of Nr5a1a and Foxl2 on cyp19a1a transcription. The sequence between Region III and I-box of Nr5a1a was critical to this synergistic effect. Dmrt1a modulated the Foxl2- and Nr5a1a-induced activation of cyp19a1a transcription and their synergistic effects in a biphasic manner, with inhibitory roles observed at lower doses (10–50 ng) but release of the inhibition or even potentiating effects observed at higher doses (100–200 ng). Collectively, data of the present study suggest that the interaction of Dmrt1a, Foxl2, and Nr5a1a in the ovarian follicular cells may facilitate the adequate expression of cyp19a1a and the production of estradiol, and contribute to the development and maturation of ovarian follicles in ricefield eels and other vertebrates as well.