This paper deals with the representation of relativistic equations of gas dynamics with due regard to the general relativity theory effects in the form accepted and widely applied in the special relativity theory. With this purpose, a strict formal definition of a non-inertial co-moving reference frame without rotation is carried out on the basis of a tetrad formalism by use of the Fermi—Walker rules of transport of 4-frame. The equations of physical kinetics, relativistic collapse, Einstein's equations, equations of relatiivistic radiation gas dynamics for ideal and dissipative gases, Taub's equations for a shock wave, which allow for radiation and electron-positron pairs, are obtained in this reference frame. On the basis of the local Lorentz transformation and the Ricci rotation coefficients, these equations are written in the laboratory reference frame, in order to illustrate the fact that the general relativity effects can be simply taken into account in the equations having a form accepted in the special relativity theory.
Read full abstract