The p-arms of the five human acrocentric chromosomes bear nucleolar organizer regions (NORs) comprising ribosomal gene (rDNA) repeats that are organized in a homogeneous tandem array and transcribed in a telomere-to-centromere direction. Precursor ribosomal RNA transcripts are processed and assembled into ribosomal subunits, the nucleolus being the physical manifestation of this process. I review current understanding of nucleolar chromosome biology and describe current exploration into a role for the NOR chromosomal context. Full DNA sequences for acrocentric p-arms are now emerging, aided by the current revolution in long-read sequencing and genome assembly. Acrocentric p-arms vary from 10.1 to 16.7 Mb, accounting for ∼2.2% of the genome. Bordering rDNA arrays, distal junctions, and proximal junctions are shared among the p-arms, with distal junctions showing evidence of functionality. The remaining p-arm sequences comprise multiple satellite DNA classes and segmental duplications that facilitate recombination between heterologous chromosomes, which is likely also involved in Robertsonian translocations. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 24 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.