Hepatitis B virus (HBV)-related liver diseases, including hepatitis, cirrhosis, and liver failure, seriously threaten human lives and health worldwide. Innate and adaptive immune cells are all thought to participate in HBV-related diseases. However, there is a lack of information on the comprehensive landscape of the immune microenvironment. In this study, single-cell ribonucleic acid sequencing was performed on liver samples obtained from patients diagnosed with hepatitis, cirrhosis, and acute-on-chronic liver failure, which were caused by HBV. Trajectory analysis was performed to analyze the evolution of cell subsets, and branch expression analysis modeling was applied to visualize the changes in gene expression during evolution. Finally, there was a significant increase in adaptive immune cells in the hepatitis and cirrhosis groups, whereas more innate immune cells were observed in the liver failure group. Furthermore, we found that monocytes underwent remarkable transcriptomic changes into FABP5+ macrophages, promoting the degranulation and chemotaxis of neutrophils through RESISTIN signaling; and LGMN+ macrophages, with the sequential activation of antigen presentation and defense to pathogens through SPP1 signaling. Macrophages were revealed as central to the progression of acute-on-chronic liver failure, as they regulated the activation or inhibition of other immune cells, which could help in developing an effective novel therapy.
Read full abstract