Abstract
This study evaluates the symmetry of data distributions after normalization, focusing on various statistical tests, including a few explored test named Rp. We apply normalization techniques, such as variance stabilizing transformations, to ribonucleic acid sequencing data with varying sample sizes to assess their effectiveness in achieving symmetric data distributions. Our findings reveal that while normalization generally induces symmetry, some samples retain asymmetric distributions, challenging the conventional assumption of post-normalization symmetry. The Rp test, in particular, shows superior performance when there are variations in sample size and data distribution, making it a preferred tool for assessing symmetry when applied to genomic data. This finding underscores the importance of validating symmetry assumptions during data normalization, especially in genomic data, as overlooked asymmetries can lead to potential inaccuracies in downstream analyses. We analyze postmortem lateral temporal lobe samples to explore normal aging and Alzheimer’s disease, highlighting the critical role of symmetry testing in the accurate interpretation of genomic data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.