The conduction of experiments to evaluate a tag orientation and its readability in a laboratory offers great potential for reducing time and costs for users. This article presents a novel methodology for developing simulation models for RFID (radio-frequency identification) environments. The main challenges in adopting this model are: (1) to find out how the properties of each one of the materials, on which the tag is applied, influence the read range and to determine the necessary power for tag reading and (2) to find out the power of the backscattered signal received by the tag when energised by the RF wave transmitted by the reader. The validation tests, performed in four different kinds of environments, with tags applied to six different kinds of materials, six different distances and with a reader configured with three different powers, showed achievements on the average of 95.3% accuracy in the best scenario and 87.0% in the worst scenario. The methodology can be easily duplicated to generate simulation models to other different RFID environments.
Read full abstract