BackgroundCytoplasmic male sterility in flowering plants is a convenient way to use heterosis via hybrid breeding and may be restored by nuclear restorer-of-fertility (Rf) genes. In most cases, Rf genes encoded pentatricopeptide repeat (PPR) proteins and several Rf genes are present in clusters of similar Rf-PPR-like (RFL) genes. However, the Rf genes in cotton were not fully characterized until now.ResultsIn total, 35 RFL genes were identified in G. hirsutum, 16 in G. arboreum, and 24 in G. raimondii. Additionally, four RFL-rich regions were identified; the RFL-rich region in Gh_D05 is the probable location of Rf-PPR genes in cotton and will be studied further in the future. Furthermore, an insertion sequence was identified in the promoter sequence of Gh_D05G3392 gene in the restorer line, as compared with the CMS-D2 line and maintainer lines. An InDel-R marker was then developed and could be used to distinguish the restorer line carrying Rf1 from other genotypes without the Rf1 allele.ConclusionIn this study, genome-wide identification and analysis of RFL genes have identified the candidate Rf-PPR genes for CMS in Gossypium. The identification and analysis of RFL genes and sequence variation analysis will be useful for cloning Rf genes in the future and also for three-line hybrid breeding in cotton.
Read full abstract