The use of a variable duty cycle pulsed RF plasma is shown to provide film chemistry control during polymerization of saturated (CH2Br2) and unsaturated (CH2=CHCH2Br) bromine containing monomers. With both monomers, the degree of bromine atom retention in the films is observed to increase in a progressive fashion as the RF duty cycle employed during plasma polymerization is decreased. The film deposition rates, when expressed in terms of thickness per Joule of RF energy input, increase rapidly as the RF duty cycles are reduced. Additionally, the film morphology is observed to become increasingly smooth with decreasing RF duty cycles during deposition, as illustrated with the allyl bromide monomer. The film chemistry controllability of this study is demonstrated with monomers possessing the relatively weak C-Br bond. As such, the present work represents an important extension of the pulsed plasma polymerization approach to include retention of a labile bond during film formation. The introduction of reactive surface functional groups, at controlled densities, provides additional molecular tailoring possibilities via subsequent chemical derivatization processes.