This paper presents a highly efficient 5G New-Radio (NR) RF power amplifier module (PAM). The n77 PAM consists of a high-voltage differential-topology 2 μm GaAs HBT power amplifier, a CMOS controller, a silicon-on-insulator (SOI) switch, an integrated passive device (IPD) bandpass filter, a low-noise amplifier (LNA), and a bi-directional coupler. This PAM generates a saturation output power of 32.7 dBm including the loss of the SOI switch and output filter. The designed n77 PAM is tested with a commercial envelope tracker IC (ET-IC). The designed PAM with an ET-IC achieves an ACLR of −37 dBc at a 27 dBm output power with a DFT-s-OFDM QPSK 100 MHz NR signal and saves a dc power consumption of 950 mW compared to the APT mode. For the CP-OFDM 256QAM with the most stringent EVM requirements, it achieves an EVM of 1.22% at 23 dBm and saves 640 mW compared to the APT mode.