BackgroundSynthetic cathinones (SCs) are a large category of new psychoactive substances (NPS), which pose a serious threat to public health due to limited information about their toxicology and pharmacology. Many SCs are closely related in their chemical structures, with some substances being positional isomers. In this study, we propose a new workflow for the identification of SC isomers using liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS2) combined with electron activated dissociation (EAD) and chemometrics. Differentiation between isomeric SCs is essential for both legislative and public safety reasons, since minor differences in their molecular structures may change their legal status and pharmacological profiles. ResultsThe workflow was optimized using ring-substituted isomers of methylmethcathinones, methylethcathinones, and chloromethcathinones. The kinetic energy in the EAD cell was investigated at three levels (i.e., 15, 18, and 20 eV) for each group. Two data analysis methods (i.e., t-distributed stochastic neighbor embedding [t-SNE] and a Random Forest [RF] algorithm) were applied using the obtained EAD mass spectral data. The three sets of ring-substituted SCs were clearly distinguished using t-SNE and an RF algorithm. Moreover, the RF approach resulted in a 97 % classification accuracy for isomer identification using various combinations of compounds, isomers, and electron kinetic energies. This workflow was subsequentially applied to the analysis of 26 blind street samples, resulting in a 92 % classification accuracy for isomer identification. However, the accuracy varied based on the kinetic electron energy. A subset of the original data set, focusing on 15-eV data only, was used, resulting in a classification accuracy of 100 %. SignificanceThis study presents the first LC-HRMS2 workflow based on EAD and chemometrics, which resulted in a classification accuracy of 100 % of authentic street samples. The developed LC-HRMS2 workflow demonstrates that EAD product ions and their characteristic ion ratios can be successfully used to identify ring-substituted positional isomers of SCs.