Digital twin is a new concept that is rapidly gaining recognition especially in the medical field. Indeed, being a virtual representation of real-world entities and processes, a digital twin can be used to accurately represent the patients' disease, clarify the treatment target, and realize personalized and precise therapies. However, despite being a revolutionary concept, the diffusion of digital twins in type 1 diabetes (T1D) is still limited. In this systematic review, we analyzed structure, operating conditions, and characteristics of digital twins being developed for T1D. Our search covered published documents until March 2024: 220 publications were identified, 37 of which were duplicated entries; in addition, 173 publications were removed after inspection of titles, abstracts, and keywords; and finally, 11 publications were fully reviewed, of which 8 were deemed eligible for inclusion. We found that all eight methodologies are not comprehensive multi-scale virtual replicas of the individual with T1D, but they all focus on describing glucose-insulin metabolism, aiming to simulate glucose concentration resultant from therapeutic interventions. In this review, we will compare and analyze different factors characterizing these digital twins, such as operating principles (mathematical model, twinning procedure, validation and assessment) and the key aspects for practical adoption (inclusion of physical activity, data required for twinning, open-source availability). We will conclude the paper listing which, in our opinion, are the current limitations and future directives of digital twins in T1D, hoping that this article can be helpful to researchers working on diabetes technologies to further develop the use of such an important instrument.
Read full abstract