Abstract
Open fluidics, allowing liquid in a flow channel to interact with the external environment, is a revolutionary concept. However, fabricating a highly stable open fluidic device of arbitrary complexity, while maintaining reconfigurability, is still a challenge. This is achieved by the use of a patterned substrate and liquids that are covered with functional, readily available hydrophobic particles, providing great flexibility in the construction and use of open fluidic structures. Decorated with a coating of modified carbon nanotubes (CNTs) to encapsulate the fluids, the study capitalizes on the photothermal characteristics of CNTs to fabricate a device to probe the effects of temperature on tumor chemotherapy. The strategy substantially increases the availability and potential use of open fluidic devices.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have