Abstract

Open fluidics, allowing liquid in a flow channel to interact with the external environment, is a revolutionary concept. However, fabricating a highly stable open fluidic device of arbitrary complexity, while maintaining reconfigurability, is still a challenge. This is achieved by the use of a patterned substrate and liquids that are covered with functional, readily available hydrophobic particles, providing great flexibility in the construction and use of open fluidic structures. Decorated with a coating of modified carbon nanotubes (CNTs) to encapsulate the fluids, the study capitalizes on the photothermal characteristics of CNTs to fabricate a device to probe the effects of temperature on tumor chemotherapy. The strategy substantially increases the availability and potential use of open fluidic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.