This paper comprehensively investigates the parametric effects of differently located revolute clearance joints on the dynamic behavior of planar deployable structure based on scissor-like element. Considering the real physical mechanical joints, the normal and the tangential forces in the revolute clearance joints are respectively modeled using Flores contact-force model and LuGre friction model. The resulting forces and moments are embedded in the equations of motion of the scissor deployable structure for accurately describing the effect of joint clearance and governing the dynamic response of this structure. The effects of the main parameters such as the location of the clearance joint, the clearance size and the number of clearance joints on the dynamic characteristics of a multibody mechanical system have been numerically evaluated, and the results indicate that joints at different locations in a mechanical system have different sensitivities to the clearance size, and the more sensitive joint should be controlled to reduce the nonlinear behavior of this structure. Also, it can be concluded that the motion in one revolute clearance joint will affect the motion in the other clearance joints and the dynamic interaction of clearance joints is the important source of structural behavior change. Therefore, in order to accurately predict the dynamic responses of the mechanical system, the clearance effect of each joint on the multibody system should be investigated and understood.